SITA

THE SKY IS NOT THE LIMIT

AIRCOM Data Link
NASA Integrated CNS Technologies
Conference and Workshop
May 1, 2002

Jocelyn Descaillot
Manager, Datalink Systems
E-mail: jocelyn.descaillot@sita .int

Overview

- Datalink Migration Path
- SITA Infrastructure Upgrade
- New generation VHF Ground Station VGS
- VDL Avionics Qualification
- SITA VDL/ATN Milestones
- What's Next

From ACARS to VDL/ATN

- The ICAO plan for ATN implementation focuses on the provision of ATC datalink services.
- European and US ATC agencies plan to implement ATN/CPDLC systems (Miami B1, Maastricht P2L 2002, 2005 for B1A/Link2000+).
- ATN implementation in aircraft will be facilitated by the prior installation of CMU/VDR architecture.
- An interim VDL implementation in avionics justifies the deployment of a network of VDL ground stations which are ready to support ATN service.
- An Interim VDL implementation will provide experience of VDL use of the VHF band which is needed to plan for a system to support ATC datalink.

From ACARS to VDL/ATN

- VHF ACARS network saturation in the high density airspace of Europe and the USA could be resolved by the use of VDL which provides 10-20 times more capacity per channel.
- Interim Solution = AOA (ACARS Over AVLC)
 - ACARS over AVLC (AOA) was presented to the AEEC
 Datalink Users Forum by AIRBUS/Boeing/SITA/ARINC.
 - ACARS over AVLC was recognized by the Users Forum as the optimum solution for airlines which decide to implement an interim VDL solution.

VDL AIRCOM Migration Path

- Support of alternative implementation strategies
 - (A) Support of VDL avionics, ACARS applications and existing ground interfaces
 - Immediate performance improvements
 - Support AOA and ACARS when and where available
 - (B) GACS Implementation Support ATN capable aircraft, using ACARS applications and existing ground interfaces
 - Early introduction of ATN avionics without the need to change applications or ground interfaces
 - (C) Support of full VDL and ATN avionics, applications and ground systems

VDL AIRCOM Migration Path

SITA Infrastructure Upgrade

- Harris contracted to produce VGS according to SITA specifications
- VGS can simultaneously support
 - ACARS
 - VDL ACARS over AVLC (AOA)
 - VDL Mode 2/ATN
 - VDL Broadcast
- VGS are gradually replacing existing legacy ACARS stations

VGS

VGS Basic Configuration

- SITA's VGS basic Hardware components
 - Support a minimum of 7 transceivers
 - configured for ACARS or VDLM2
 - VHF Ground Computer (VGC)
 - WAN IP and legacy X.25 interface
 - No fans to preserve high availability
 - However, engineered to support high temperature range (worldwide deployment)
 - Basic Availability: 99.99%

VGS Redundancy

- SITA's VGS designed to meet CAA and Airline Service Availability requirements:
 - Standby transceivers
 - Dual CPU/load-balancing
 - Dual UPS
 - Dual Power Supply
 - Back-up X.25 interface (64kbps+)
 - Dual IP Router IP VPN/Frame Relay
 - ISDN Dial-backup

VGS Network Management

- SITA's VGS SNMP based NM
 - Supports Fault, Configuration, Accounting,
 Performance and Security
 - Remote download for both Radio and VGC
 - Real time reporting of faults, alarms to the Central Manager
 - Real time/deferred trace capability to support trouble shooting + Flight Test

VDL /ATN Protocol Stacks

SITA supports
ATN, AOA, VDL
Broadcast to make
full use of VDL
capabilities in
order to provide
flexibility and
performance
improvements.

ACARS, AOA, VDL/ATN

VGS supports ACARS, AOA and VDL/ATN

VDL Avionics Qualification

Requirements and Setup for VDL

- Present SITA VAQ covers VHF, SATCOM and HFDL (via simulation) avionics
- VDL equipped aircraft will require additional testing related to:
 - POA to AOA/ATN switchover
 - VDL protocol implementation
 - RF performance
 - Multimedia handling
 - System management
 - ATN connectivity
- VAQ test-bed requires upgrade to enable these tests

Scope of VDL Testing

 SITA VAQ facility will cover every aspect of functionality and operation of the Mode 2 protocol between the avionics CMU and the ground system

Service provider specific requirements

VDL Test Requirements

Standards

- 631/VDL SARPS, 618, 750, 758 compliance
- 637/GACS, ATN SARPS
- Interoperability with SITA Ground Systems
- VAQ Test Plan (same process as for ACARS)
- Coordination with ARINC

RF Interoperability/VDR-VGS

- D8PSK mask
- HFEC/MFEC /Bit Scrambling/Interleaving/FCS (do messages get through ?)
- Co-channel/Adjacent channel (success rate)
- VDR Buffering for RF burst and VDR delays

CMU

- A/G LME G/G LME (XID sequence/parameter)
- AVLC States (FRMR, SREJ, DM, ABM)
- Handoffs dual link, T5 ACARS/VDL switch
- AOA 618, 8208 protocol (Q0 on new link)-Round trip

SITA VDL/ATN Milestones

- Interoperability testing between VDL avionics and VGS successfully performed at the VAQ testbed
 - Collins CMU, ATSU, Honeywell, Teledyne, Thales
- VGS installed at Rockwell Collins, Teledyne,
 Honeywell, Airbus for lab and over-the-air testing
- Extensive Testing with Eurocontrol at Boscombe Down for ATN CPDLC (same version as used in B1)
 - Successful Flight Tests with the BAC1-11
- SITA is involved in GACS testing with Eurocontrol
 - Successful end-to-end testing
- Upcoming testing with Airbus for ATN over VDL and SATCOM Data-3

What's Next?

Next step after AOA/ATN CPDLC

- SITA has completed development of VDL Mode 2 AVLC (AOA) support for ACARS and ATN/CPDLC.
- What is the next step for VDL Mode 2 data link?
 - ATN GACS interface for AOC.
 - Enables ACARS applications to use an ATN router as per AEEC 637 specification
 - potential enabler for Bit-Oriented Applications, SITA supports Trials with Eurocontrol.
 - IP Solution for AOC ?
 - VDL/Satcom links that today support ACARS could also support an IP router for AOC in parallel with an ATN router for ATS?

AOC Bit Oriented Applications

- IP offers a vast variety of applications: FTP, SNMP...
 - ATN may have limited offering (ATN FTAM Server not readily available for File transfer)
 - Cost effective solution using IP (compare CMIP with SNMP)
- Communications Security is addressed with IP
 - VPN IPsec implements Authentication, Encryption, Tunneling (subset of IPV6)
 - IPV4
 - IPV6
 - PPP

?IP for AOC

IP/ Satcom Swift64

- Satellite AIRCOM Swift64
 - Services provide communication services for airlines' aircraft to access Ground systems via two-way high-rate TCP/IP link.
- Two new Satellite services developed by INMARSAT
 - the circuit-mode service (Inmarsat Swift64 Mobile ISDN Service referred to as MISDN) and the packet-mode service (Inmarsat Swift64 Mobile Packet Data Service referred to as MPDS).

IP / Gatelink

- IEEE 802.11 defines a standard for Wireless LAN communications:
 - Specifies layer 1 (FHSS/DSSS/Infra-red)
 - Throughput up to 2 Mpbs
 - Specifies layer 2
 - Link layer is seen as a standard MAC layer by higher level protocols (e.g. IP)

- On-board Router NSS composed of:
 - Network Server Unit (NSU)
 - both a file server and <u>IP router</u>
 - System offering Ethernet Interfaces
 - Server Interface Unit (SIU)
 - addresses legacy avionics end-systems

Integrated IP Solution

- PPPoE (PPP Over Ethernet) RFC 2516
 - Common interface to all on-board IP Host
 - Two stage: Discovery stage and a PPP Session stage.
 - In the Discovery process, a Host discovers Access Concentrators
 - Interfacing to the NSS (On-board IP Router/File Server):
 - For Satcom, the MES should be the access concentrator
 - For Gatelink, the access concentrator should be at the airport and may provide access to several service providers
 - For VDL2, the CMU should offer an Ethernet interface to be the access concentrator

Integrated IP Solution

